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Abstract: This paper proposes the nonparametric asymmetric kernel method in the study of strong stability of
the PH/M/1 queuing system, after perturbation of arrival distribution to evaluate the proximity of the complex
GI/M/1 system, where GI is a unknown general distribution. The class of generalized gamma (GG) kernels is con-
sidered because of its several interesting properties and flexibility. A simulation for several models illustrates
the performance of the GG asymmetric kernel estimators in the study of strong stability of the PH/M/1, by com-
puting the variation distance and the stability error.
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1 Introduction

The study of the performance of complex systems by queuingmodels is a research fieldwith increasing interest.
Indeed, a large class of mathematical models comes from queuing theory (computer, communication, produc-
tion and manufacturing, etc.). However, various problems may be encountered during the design as well as the
analysis of complex systems. The existing analytical methods are limited, and known results for many types of
queues are approximate or complicated. Indeed, in most cases, we find ourselves facing systems of equations
whose solutions are very difficult or which have solutions that are not easily interpretable. Therefore, one often
uses approximationmethods which consist in replacing the complex system by a simpler one, close to it in some
sense and analytically exploitable. For example, due to the complexity of queuing systems with a general distri-
butions, several studies have proposed the use of phase type distributions to approximate general distributions
in simple queues as well as queuing networks models (see, e.g., [9, 13]).

The approximation of a non-negative distribution by a combination of exponential distributions (known
as phase type (PH) distributions, e.g. Erlang, hyper-exponential, hypo-exponential, Cox, . . . ) is desirable because
this class of probability distributions allows to model a large number of random events while keeping a
Markovian character, and it helps to describe the actual times in a more complex way than can be described by
the exponential distribution [2, 17, 20].

The approximation of a non-negative continuous distribution by a phase type distribution given a certain
precision level is possible because the class of PH distributions is dense in the set of non-negative distribu-
tions [2]. This approximation is necessary because real system are generally very complicated, so their analysis
cannot lead to analytical results or it leads to complicated results which are not useful in practice.

The strong stability method (see [3]) is a powerful tool for the study of the sensitivity of stochastic mod-
els that can be described by a homogeneous Markov chain.The theory of this method is well developed and

*Corresponding author: Nabil Zougab, Research Unit LaMOS and Electrical Engineering Department, University of Bejaia,
06000 Bejaia, Algeria, e-mail: nabil.zougab@univ-bejaia.dz
Yasmina Djabali, Sedda Hakmi, Djamil Aïssani, Research Unit LaMOS, University of Bejaia, 06000 Bejaia, Algeria,
e-mail: yasmina.djabali@univ-bejaia.dz, sedda.hakmi@univ-bejaia.dz, djamil.aissani@univ-bejaia.dz



2  Y. Djabali et al., Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system

allows the derivation of perturbation bounds in addition to the qualitative affirmation of the robustness of the
considered model. A Markov chain is said to be strongly stable when small perturbations in the inputs (transi-
tion matrix) can lead to at most a bounded deviation of the outputs (stationary vector). Under this condition,
approximations (such as the use of PH distributions instead of general ones) and parameter estimation errors
result in a controlled deviation in the characteristics of the system in the sense that an upper bound of this
deviation can be estimated. The strong stability method has been applied to various stochastic models (queuing
models [1, 7, 8, 19], queuing models with PH distribution [10], inventory models [18], risk models [6], . . . ). Note
that, in practice, all model parameters are imprecisely known because they are obtained by means of statistical
methods. In this sense, one aspect which is of interest is when a distribution governing a queuing system is
unknown and we resort to nonparametric methods to estimate its density function; see for example [12, 14, 21]
for asymmetric kernels families.

In this paper, we use nonparametric estimation to approximate the complex GI/M/1 system by the simpler
PH/M/1 one, when the general law of arrivals GI is unknown, so its density function must be estimated by using
the nonparametric kernel density method; see for example [4] on kernel density estimation in the study of the
strong stability of the M/M/1 queuing system. Our analysis will focus on the stability of queuing models with PH
distribution of two phases, where we propose the nonparametric asymmetric kernel method by using a class
of generalized gamma (GG) kernels, because of its several interesting properties and flexibility; see [12, 14] for
more details. Besides evaluating the proximity error between the corresponding service time distributions of
the GI/M/1 and PH/M/1 systems and the approximation error on their stationary distributions, the norm of the
deviation of the transition matrix is obtained. Our presented work is motivated by several points. First, the PH
distributions are attractive in practice, in particular for queuing systems analysis. Second, the nonparametric
kernel method does not impose any restriction on the unknown density GI to be estimated. As third motivation,
our work can be considered as a complement to the existing literature on the study of the strong stability of
queuing systems (see [4, 5, 19]).

The remainder of this paper is organized as follows. Section 2 proposes a brief recall on strong stability
approach. Section 2 gives some results on strong stability of PH/M/1 queuing systems. The application of the
generalized gamma kernels method in the study of strong stability of the PH/M/1 queuing system is presented
in Section 3. Section 4 concludes.

2 Strong stability of PH/M/1 queuing systems

In this section, we study the strong stability of the embeddedMarkov chain of the queuing system PH/M/1 which
is proposed as approximation to a GI/M/1 system. The perturbation considered here consists in replacing the
inter-arrival distribution GI of the real system by a PHwith two phases. As explained before, we aim to confirm
the robustness of the PH/M/1 queuing model and then estimate the approximation error.

Recall that the density of a phase type random variable with parameters ( ⃗τ, T), denoted by PH( ⃗τ, T) is

f (x) = ⃗τeTx ⃗v, x ≥ 0. (2.1)

Let X be a random variable having a PH distribution with two phases. Further,

⃗τ = (τ1 , τ2), T = (T11 T12
T21 T22

), ⃗v = (v1
v2
),

where ⃗τ is the initial probability vector, T denotes the generator transientMarkov chain and ⃗v is a column vector
denoting the transitions between the transient states and absorbing states. We have

eTx = U(e
D1x 0
0 eD2x)U

−1 ,

where D1 and D2 are eigenvalues of the matrix T ,

U = (a b
c d
), and U−1 = (

̀a b̀
̀c ̀d
).
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Then

eTx = (a
̀aeD1x + b ̀ceD2x ab̀eD1x + b ̀deD2x

c ̀aeD1x + d ̀ceD2x cb̀eD1x + d ̀deD2x).

From equation (2.1), we obtain
f (x) = BeD1x + CeD2x ,

with
{
{
{

B = τ1v1a ̀a + τ2v1c ̀a + τ1v2ab̀ + τ2v2cb̀,

C = τ1v1b ̀c + τ2v1d ̀c + τ1v2b ̀d + τ2v2d ̀d.

2.1 Model’s description

Denote by Σ̃ the queuing system of type GI/M/1 (FIFO,∞). Inter-arrival times are independent and identically
distributed random variables with common non-negative distribution having rate λ and coefficient of variabil-
ity ca < 1. Let G be the common cumulative function of the successive inter-arrival times. Service times are
independent and identically distributed exponential random variables with rate μ and are independent of the
inter-arrival times. Assume that the load of the system ρ = λ

μ is less than 1.
The sequence ̃X = { ̃Xn , n = 0, 1, . . .} of random variables, where ̃Xn represents the number of customers in

the system as seen by the n-th customer at his arrival time tn , is a time-homogeneous Markov chain [11]. Denote
by ̃P the transition matrix of ̃X, where the transition probabilities ̃Pij = P( ̃Xn+1 = j| ̃Xn = i) are given as follows:

̃Pij =

{{{{{{{{{
{{{{{{{{{
{

̃di+1−j =
+∞

∫
0

(μt)i+1−j

(i + 1 − j)! e
−μt dG(t) if 1 ≤ j ≤ i + 1,

1 −
i
∑
k=0

̃dk if j = 0,

0 otherwise.

On the other hand, we denote by Σ the queuing system of type PH/M/1 (FIFO,∞) that we propose as an approx-
imation to Σ̃. The inter-arrival times are independent and identically distributed phase type random variables
having a common cumulative function PH with parameters ( ⃗τ, T). Service durations are independent and iden-
tically distributed exponential variables with rate μ and are independent of inter-arrival times.

The sequence X = {Xn , n = 0, 1 . . .} of random variables representing the number of customers in the sys-
tem (Σ) as seen by the n-th arriving customer is a time-homogeneous Markov chain with transition matrix
denoted by P, where

Pij =

{{{{{{{{
{{{{{{{{
{

di+1−j = μi+1−j(
B

(μ − D1)i+2−j
+

C
(μ − D2)i+2−j

) if 1 ≤ j ≤ i + 1,

1 −
i
∑
k=0

dk = −
B
D1
(

μ
μ − D1
)
i+1
−

C
D2
(

μ
μ − D2
)
i+1

if j = 0,

0 otherwise.

Let use suppose that the distribution of the service time of the GI/M/1 system is close to PH(t) with two phases.
This proximity is then characterized by the metric

W(G, H) =
∞

∫
0

|G − PH2|(dt), (2.2)

The Markov chain X is irreducible and aperiodic. It is ergodic and admits a unique stationary probability
vector π. The steady-state probabilities of the ergodic Markov chain X,

πj = lim
n→∞
ℙ[Xn = j] for all j ≥ 0,
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are the solution of the following system of equations:

{{{{
{{{{
{

πj =
∞

∑
i=0

πiPij ,
∞

∑
j=0

πj = 1.

Thus, we obtain

πj = (1 − σ)σ j , σ =
(μ2 − μ(D1 + D2)) −√Δ

2
with

Δ = (μ2 − μ(D1 + D2))
2 − 4μ2(D1D2 − μ(B + C)).

2.2 Strong v-stability of the Markov chain X

The first result is given by the following theorem. It confirms to us the robustness of the underlying Markov
chain and hence its ability to resist to perturbations.

Theorem 1. The Markov chain X = {Xn , n = 0, 1 . . .}, where Xn is the number of customers in the system as seen
by the n-th arrival of customer, is v-strongly stable for the test function v(k) = βk for all β such that 1 < β < β0,
where

β0 =
(1 − R1 − R2) +√Δ0
2(R3 + R4 + R1R2)

,

with
Δ0 = (1 − R1 − R2)2 − 4(R3 + R4 + R1R2)

and
R1 =

D1
μ , R2 =

D2
μ , R3 =

B
μ , R4 =

C
μ .

Proof. To prove the strong v-stability of the embedded Markov chain X for the function v(k) = βk , with β > 1,
we check the conditions of the theorem given in [3, 15].

Therefore, we consider the measurable function h(i) = Pi0 and the measure

αj = 1j=0 =
{
{
{

1 if j = 0,
0 if j > 0.

Obviously,
πh =∑

i≥0
πihi =∑

i≥0
πiPi0 > 0,

α1 =∑
j≥0

αj = α0 +∑
j≥1

αj = α0 = 1,

αh =∑
i≥0

αihi = α0h0 +∑
i≥1

αihi = h0 = P00 > 0.

Moreover,

Tij = Pij − hiαj =
{
{
{

0 if j = 0,
Pij if j > 0.

Hence, T is non-negative.
Presently, we aim to show that there exists a positive constant ρ < 1 such that Tv(i) ≤ ρv(i) for all i. Indeed,

we have

Tv(i) =∑
j≥0

v(j)Tij = v(0)Ti0 +
i+1
∑
j=1

βjdi+1−j

=
i+1
∑
j=1

βjμi+1−j( B
(μ − D1)i+2−j

+
C

(μ − D2)i+2−j
)
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=
Bβi+1

μ − D1

i+1
∑
j=1
(

μ
β(μ − D1)

)
i+1−j
+

Cβi+1

μ − D2

i+1
∑
j=1
(

μ
β(μ − D2)

)
i+1−j

=
Bβi+1

μ − D1
(
1 − ( μ

β(μ−D1)
)i+1

1 − ( μ
β(μ−D1)
)
) +

Cβi+1

μ − D2
(
1 − ( μ

β(μ−D2)
)i+1

1 − ( μ
β(μ−D2)
)
)

=
Bβi+1(1 − ( μ

β(μ−D1)
)i+1)

μ − D1 −
μ
β

+
Cβi+1(1 − ( μ

β(μ−D2)
)i+1)

μ − D2 −
μ
β

.

Let us put R1 = D1
μ , R2 =

D2
μ , R3 =

B
μ , R4 =

C
μ ,

Tv(i) = βi+1[(R3
1 − ( 1

βi+1(1−R1)i+1
)

1 − R1 − 1
β
) + (R4

1 − ( 1
βi+1(1−R2)i+1

)

1 − R2 − 1
β
)],

Tv(i) = βi+1[ R3
1 − R1 − 1

β
+

R4
1 − R2 − 1

β
+ C],

where
C = −1

βi+1
[

R3
(1 − R1)i+1

1
1 − R1 − 1

β
+

R4
(1 − R2)i+1

1
1 − R2 − 1

β
].

We have R1R2 = −R3R2 − R4R1, R1 < 1 − 1
β and R2 < 1 −

1
β , so C < 0. Therefore,

Tv(i) ≤ βi+1[ R3
1 − R1 − 1

β
+

R4
1 − R2 − 1

β
],

i.e., Tv(i) ≤ ρv(i) with
ρ = R3β

1 − R1 − 1
β
+

R4β
1 − R2 − 1

β
.

We aim now to clarify the conditions under which ρ < 1,

R3β
1 − R1 − 1

β
+

R4β
1 − R2 − 1

β
< 1 󳨐⇒

R3β(1 − R2 − 1
β ) + R4β(1 − R1 −

1
β )

(1 − R1 − 1
β )(1 − R2 −

1
β )

< 1

󳨐⇒
β2(R3 + R4 + R1R2) − β(1 − R1 − R2) + 1

1 − 1
β

< 0

󳨐⇒ β2(R3 + R4 + R1R2) − β(1 − R1 − R2) + 1 < 0.

The left-hand side polynomial in β admits two positive roots, and since β is assumed > 1, we conclude that

ρ < 1 if 1 < β < β0 ,

where

β0 =
(1 − R1 − R2) +√Δ0
2(R3 + R4 + R1R2)

and Δ0 = (1 − R1 − R2)2 − 4(R3 + R4 + R1R2).

Finally, we have

ρ = R3β
1 − R1 − 1

β
+

R4β
1 − R2 − 1

β
< 1,

where Tv(i) ≤ ρβk , under the condition

1 < β < (1 − R1 − R2) +
√(1 − R1 − R2)2 − 4(R3 + R4 + R1R2)
2(R3 + R4 + R1R2)

.

Let us now check that ‖P‖v <∞. We have

T = P − h ∘ α 󳨐⇒ P = T + h ∘ α 󳨐⇒ ‖P‖v ≤ ‖T‖v + ‖h‖v‖α‖v ,
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whereas
‖T‖v = sup

i≥0

1
βi
∑
j≥0

βj|Tij| ≤ sup
i≥0

1
βi
ρβi ≤ ρ < 1,

‖h‖v = sup
i≥0

1
v(i)
|h(i)| = sup

i≥0

1
βi
Pi0 < 1,

‖α‖v =∑
j≥0

v(j)αj =∑
j≥0

βjαj = α0 +∑
j≥1

βjαj = 1.

Thus, ‖P‖v <∞. Hence, all the conditions are satisfied.

Theorem 2. Let π and ̃π be the stationary distributions of the embeddedMarkov chains of the system (Σ) and (Σ̃),
respectively. Then, for all 1 < β < β0 and under the condition

W(G, H) < (1 − ρ)(1 − βσ)
(1 + β)(2 − σ(1 + β))

,

we have
‖π − ̃π‖v ≤

(1 + β)(1 − σ)(2 − σ(1 + β))
(1 − βσ)2(1 − ρ) − (1 − βσ)(2 − σ(1 + β))(1 + β)W(G, H)

W(G, H), (2.3)

where
ρ = R3β

1 − R1 − 1
β
+

R4β
1 − R2 − 1

β
< 1.

Proof. Firstly, we compute ‖1‖v and ‖π‖v as follows:

‖1‖v = sup
k≥0

1
βk
= 1, ‖π‖v =∑

j≥0
βjπj =∑

j≥0
βj(1 − σ)σ j = (1 − σ)∑

j≥0
(βσ)j = 1 − σ

1 − βσ .

Therefore,
C = 1 + ‖1‖v‖π‖v =

2 − σ(1 + β)
1 − βσ .

Using the results of [3, 16], we obtain

‖π − ̃π‖v ≤
(1 + β)(1 − σ)(2 − σ(1 + β))W(G, H)

(1 − βσ)2(1 − ρ) − (1 − βσ)(2 − σ(1 + β))(1 + β)W(G, H)
.

3 Generalized gamma kernels in the study of strong stability
of the PH/M/1 queuing system

This section investigates the strong stability of the PH/M/1 queuing system using the asymmetric GG kernel
method, by computing the variation distance W and the error given by equations (2.2) and (2.3), respectively,
using simulation study. The Monte Carlo simulation study is realized on seven models given as follows:
(D1) the gamma model with parameters (a, b) = (0.75, 1.25);
(D2) the Weibull model with parameters (a, b) = (1.5, 25);
(D3) the PH2 model with parameters

{(1, 0),(−2 2
0 −2
)};

(D4) the PH2 model with parameters

{(1, 0),(−2 2
0 −3
)};

(D5) the PH2 model with parameters

{(1, 0),(−2 1
0 −3
)};
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Kernel Explicit form Parameters

MG KMG(y; x, h) =
yα−1 exp{−y/(β/α)}
(β/α)αΓ[α] , y ≥ 0 (α, β, γ) =

{
{
{

( xh , x, 1) for x ≥ 2h,
( x

2

4h2 + 1,
x2
4h + h, 1) for x ∈ [0, 2h)

NK KNK(y; x, h) =
2(α/2)α/2

[(α/2)[βΓ(α/2)/Γ((α + 1)/2)]2]α/2Γ(α/2)
y2(α/2)−1

× exp[− α/2
(α/2)[βΓ(α/2)/Γ((α + 1)/2)]2]

y2], y ≥ 0

(α, β, γ) =
{
{
{

( xh , x, 2) for x ≥ 2h,
( x

2

4h2 + 1,
x2
4h + h, 2) for x ∈ [0, 2h)

W KW(y; x, h) =
α

β/Γ(1 + 1/α)[
y

β/Γ(1 + 1/α)]
α−1

× [−[β/Γ(1 + 1/α)]α], y ≥ 0

(α, β, γ) =
{
{
{

(√ x
h , x,√

x
h ) for x ≥ 2h,

( x2h + 1,
x2
4h + h,

x
2h + 1) for x ∈ [0, 2h)

Table 1: Generalized gamma (MG, NK and W) kernels.

Kernel C V

MG 1 1/(2√π)
W π2/12 1/(2√2)
NK 1/2 1/(√2π)

Table 2: Values of C and V for MG, NK and W kernels.

(D6) the PH3 model with parameters

{{
{{
{

(1, 0, 0),(
−2 2 0
0 −6 6
0 0 −1/2

)
}}
}}
}

;

(D7) the PH3 model with parameters
{{
{{
{

(1, 0, 0),(
−2 1 0
0 −3 3/2
0 0 −4

)
}}
}}
}

.

For each model, 500 data sets of sample sizes n = 100, 250, 500 and 1000 are generated. To estimate the PDF of
the considered models, we used the GG kernel estimator given by (see [14])

̂f GG(x) =
1
n

n
∑
i=1

KGG(Xi; x, h) =
1
n

n
∑
i=1

γXα−1
i exp[−{ Xi

βΓ(α/γ)/Γ((α+1)/γ) }
γ]

{βΓ(α/γ)/Γ((α + 1)/γ)}αΓ(α/γ) , x > 0,

where {Xi}ni=1 is drawn from a density f , (α, β, γ) = (αh(x), βh(x), γh(x)) are continuous functions of the design
point x and the bandwidth h, which satisfies some conditions (see [14] formore details). We consider three cases
of GG kernels (MG, NK and W kernels) given in Table 1 in the study of strong stability of the PH/M/1 queuing
system because of its several interesting properties and flexibility.

For bandwidth selection, we used the rule of thumb (RT) and the unbiased cross validation (UCV) methods
for comparison. The rule of thumb selector is obtained (see [14]) by replacing the unknown density f by a known
reference gamma model with parameters α > 0 and β > 0,

ĥRT = {
4α−1Vβ5/2Γ(α)Γ(α + 5/2)

C2CαΓ(2α)
}
2/5
n−2/5 ,

where

Cα =
1
4
(α − 2)2(α − 1)2 − α(α − 2)(α − 1)2 + 1

2
α(3α − 4)(α − 1)(α + 1

2
)

− α(α − 1)(α + 1
2
)(α + 1) + 1

4
α(α + 1

2
)(α + 1)(α + 3

2
)
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and the constants C and V are given in Table 2. Note that the parameters α and β are replaced by the corre-
sponding estimators ̂α and ̂β, which can be obtained by using the method of moments.

The UCV technique can be adapted for GG kernel estimators. For a given GG (MG, NK and W) kernel with
target x > 0 and bandwidth h > 0, the optimal bandwidth hucv is obtained by

hucv = argmin
h

UCV(h),

where

UCV(h) =
∞

∫
0

{ ̂f GG(x)}2 dx −
2
n

n
∑
i=1

̂f (−i)GG (Xi)

=
∞

∫
0

{
1
n

n
∑
i=1

KGG(Xi; x, h)}
2

dx − 2
n(n − 1)

n
∑
i=1

n
∑
j ̸=i

KGG(Xj; Xi , h).

Tables 3, 4, 5 report the deviation and stability errors for GG kernel estimators for considered models as
general arrival distribution. Note that the deviation and stability errors are also given using the theoretical
density f . From these tables, we can observe clearly that
(1) the deviation distance and the stability errors based on 500 replications decrease as sample size n increases

for the all estimators based on MG, NK and W kernels;
(2) for all models, the GG kernel estimators combined with RT bandwidth selector perform better than the GG

estimators combined with UCV bandwidth;
(3) in general, the deviation distance and the stability errors obtained using the GG kernel estimators with RT

selector are close to those given when using the theoretical density f ;
(4) the stability errors using the GG kernel estimators combinedwith UCV bandwidth selector are not obtained

for some situations because the condition stability does not hold.
The comparison is also given in Figures 1 and 2. Figure 1 shows the stability error behavior versus β (domain
of the feasible values of beta). We observe that the error decreases for the values of beta in the neighborhood
of the lower bound (1.0428 < β < 1.8965) for (D1) (resp. 1.2296 < β < 2.9296 for (D2)). This can be explained by
the way that it represent the frontier the stability domain (critical region). We also notice that it increases in
the neighborhood of the upper bound (1.9328 < β < 2.3705 for (D1)) (resp. 3.0668 < β < 10.7817 for (D2)). On the
other hand, the error increases in a reasonable waywith the values of beta (favorable region). Nevertheless, it is
interesting to consider theminimumerrorwhich corresponds in our case to β = 1.3503 for (D1) (resp.β = 1.2296
for (D2)).

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0
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Figure 1: Error variation versus β obtained using Weibull kernel combined with RT bandwidth for (D1) (in left) (D2) (in right) models
with sample size n = 500.
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n = 100 n = 250 n = 500 n = 1000
W Error W Error W Error W Error

Gamma(0.75, 1.25)

f (x) 0.08376 3.38279 0.06016 1.94906 0.04581 1.01734 0.04233 0.81570
MG UCV 0.17777 — 0.13373 — 0.09683 — 0.08134 6.68873

PI 0.11836 — 0.08140 8.51085 0.05862 1.80445 0.05347 1.31874
W UCV 0.15412 — 0.13006 — 0.09683 — 0.08456 9.52077

PI 0.11391 — 0.07185 3.75351 0.05471 1.50655 0.05031 1.14955
NK UCV 0.11941 — 0.07937 6.84214 0.05793 1.74688 0.05665 1.51848

PI 0.11583 — 0.07270 3.97493 0.05503 1.52855 0.05084 1.17617

Weibull(1.5, 25)

f (x) 0.04591 0.23110 0.03471 0.16545 0.03338 0.15820 0.02940 0.13690
MG UCV 0.08419 0.52495 0.06496 0.36181 0.06010 0.32613 0.05451 0.28744

PI 0.07593 0.45025 0.05938 0.32076 0.05051 0.26053 0.04385 0.21892
W UCV 0.08419 0.52495 0.06483 0.36082 0.05732 0.30643 0.04932 0.25315

PI 0.07593 0.45025 0.06157 0.33657 0.05150 0.26700 0.04233 0.20974
NK UCV 0.08575 0.53993 0.06867 0.39054 0.05729 0.30622 0.05108 0.26457

PI 0.07274 0.42333 0.05909 0.31870 0.04729 0.23994 0.04262 0.21148

Table 3: Deviation and stability errors for considered models in simulation study with different estimators for (D1) and (D2) models.

n = 100 n = 250 n = 500 n = 1000
W Error W Error W Error W Error

PH2{(1, 0),(
−2 2
0 −2
)}

f (x) 0.03756 0.31939 0.03964 0.35537 0.02815 0.21602 0.02259 0.16644
MG UCV 0.10272 1.93763 0.10398 2.16075 0.07957 1.00149 0.05559 0.53929

PI 0.09069 1.89332 0.090670 0.92007 0.07267 0.84230 0.05284 0.49943
W UCV 0.14461 12.57867 0.14593 21.52266 0.10867 2.14463 0.08149 1.05197

PI 0.08206 1.11667 0.08362 1.22628 0.06637 0.71763 0.04818 0.04638
NK UCV 0.13026 5.06489 0.13139 6.22444 0.10926 2.18140 0.07787 0.96083

PI 0.08367 1.16379 0.08367 1.22790 0.06699 0.72899 0.04786 0.43224

PH2{(1, 0),(
−2 2
0 −3
)}

f (x) 0.05887 0.76374 0.03943 0.36020 0.03257 0.28332 0.02069 0.16975
MG UCV 0.13543 — 0.09023 151803 0.06890 0.86994 0.05330 0.59311

PI 0.11095 4.39953 0.08294 124502 0.06422 0.76629 0.04345 0.43653
W UCV 0.18524 — 0.13147 6.97975 0.10114 2.13036 0.08624 1.49900

PI 0.09927 2.69468 0.07433 0.98980 0.06052 0.69207 0.04014 0.39052
NK UCV 0.17521 — 0.14113 15.13252 0.10385 2.31761 0.09065 1.70384

PI 0.10097 2.87272 0.07552 1.02159 0.05869 0.65760 0.03984 0.38649

PH2{(1, 0),(
−2 1
0 −3
)}

f (x) 0.24498 — 0.24673 — 0.22656 — 0.22616 —
MG UCV 0.13614 — 0.09182 2.93552 0.07447 1.41468 0.05561 0.97237

PI 0.09995 11.87899 0.06942 1.29010 0.05457 0.75067 0.03979 0.54535
W UCV 0.14845 — 0.11760 21.98498 0.08727 2.19588 0.07667 2.11835

PI 0.09542 7.30759 0.06806 1.23347 0.05055 0.65867 0.03901 0.52902
NK UCV 0.14370 — 0.10147 4.70361 0.08577 2.07906 0.07210 1.76934

PI 0.09894 10.47059 0.06948 1.29267 0.05266 0.70572 0.03792 0.50677

Table 4: Deviation and stability errors for considered models in simulation study with different estimators for (D3), (D4) and (D5) models.
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Figure 2: True PDF and GG (MG, NK and W) kernel estimators for (D1), (D3) and (D6) models with n = 500 using RT bandwidth.
The (D1) model (in left) and the (D3) model (in right) in first row and the (D6) model in second row.

4 Conclusion

In this paper, we show the interest of using the nonparametric asymmetric kernel method in the study of strong
stability of the PH/M/1 queuing system. It has been established that PH/M/1 queuing systems with phase type
arrival distributions are strongly stable (robust) with respect to the considered perturbation and hence they
can resist it to some extent. In our study, we estimated the general law of arrivals using a class of generalized
gamma (GG) kernels where the smoothing parameter is obtained with plug-in and UCV techniques. Then an
upper bound to the resultant deviation of the stationary distribution are computed. The obtained results in the
simulation study show the efficiency of the proposed approach.

Acknowledgment: We sincerely thank the editor-in-chief and the anonymous referees for their valuable com-
ments.
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n = 100 n = 250 n = 500 n = 1000
W Error W Error W Error W Error

PH3
{{
{{
{

(1, 0, 0),(
−2 2 0
0 −6 6
0 0 −1/2

)
}}
}}
}

f (x) 0.09997 1.00130 0.07325 0.59788 0.06221 0.45447 0.05593 0.39022
MG UCV 0.14266 2.49382 0.09191 0.88469 0.07875 0.65425 0.06381 0.47106

PI 0.11767 1.43216 0.08315 0.73823 0.06548 0.49005 0.05389 0.37072
W UCV 0.14635 2.73448 0.10447 1.14360 0.07990 0.67020 0.06244 0.45634

PI 0.11613 1.38744 0.08720 0.803021 0.06889 0.52906 0.05689 0.39959
NK UCV 0.13874 2.26995 0.09624 0.96658 0.08033 0.67624 0.07016 0.54338

PI 0.12250 1.58393 0.09216 0.88923 0.07344 0.58439 0.06161 0.44756

PH3
{{
{{
{

(1, 0, 0),(
−2 1 0
0 −3 3/2
0 0 −4

)
}}
}}
}

f (x) 0.07456 2.10431 0.05716 1.15051 0.03783 0.48675 0.03114 0.38288
MG UCV 0.13423 — 0.11073 — 0.07679 2.01722 0.06185 1.24017

PI 0.09915 9.73142 0.08163 3.33054 0.06005 1.08977 0.05042 0.81879
W UCV 0.15224 — 0.11732 — 0.09162 3.98754 0.07274 1.87860

PI 0.09151 5.0752 0.08117 3.24906 0.05692 0.97651 0.04886 0.77338
NK UCV 0.14201 — 0.10862 — 0.08872 3.42185 0.07549 2.10259

PI 0.09278 5.54673 0.08251 3.49553 0.05893 1.04777 0.04915 0.78165

Table 5: Deviation and stability errors for considered models in simulation study with different estimators for (D6) and (D7) models.
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